Some remarks on lengths of propositional proofs

نویسنده

  • Samuel R. Buss
چکیده

We survey the best known lower bounds on symbols and lines in Frege and extended Frege proofs. We prove that in minimum length sequent calculus proofs, no formula is generated twice or used twice on any single branch of the proof. We prove that the number of distinct subformulas in a minimum length Frege proof is linearly bounded by the number of lines. Depth d Frege proofs of m lines can be transformed into depth d proofs of O(md+1) symbols. We show that renaming Frege proof systems are p-equivalent to extended Frege systems. Some open problems in propositional proof length and in logical flow graphs are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to lie without being (easily) convicted and the lengths of proofs in propositional calculus

We shall describe two general methods for proving lower bounds on the lengths of proofs in propositional calculus and give examples of such lower bounds. One of the methods is based on interactive proofs where one player is claiming that he has a falsifying assignment for a tautology and the second player is trying to convict him of a lie. The second method is based on boolean valuations. For t...

متن کامل

Some Notes on Proofs with Alpha Graphs

It is well-known that Peirce’s Alpha graphs correspond to propositional logic (PL). Nonetheless, Peirce’s calculus for Alpha graphs differs to a large extent to the common calculi for PL. In this paper, some aspects of Peirce’s calculus are exploited. First of all, it is shown that the erasure-rule of Peirce’s calculus, which is the only rule which does not enjoy the finite choice property, is ...

متن کامل

Remarks on some recent M. Borcut's results in partially ordered metric spaces

In this paper, some recent results established by Marin Borcut [M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math. 28, 2 (2012), 207--214] and [M. Borcut, Tripled coincidence theorems for monotone mappings in partially ordered metric spaces, Creat. Math. Inform. 21, 2 (2012), 135--142] are generalized and improved, with much sho...

متن کامل

How to Lie Without Being (Easily) Convicted and the Length of Proofs in Propositional Calculus

We shall describe two general methods for proving lower bounds on the lengths of proofs in propositional calculus and give examples of such lower bounds. One of the methods is based on interactive proofs where one player is claiming that he has a falsifying assignment for a tautology and the second player is trying to convict him of a lie. The second method is based on boolean valuations. For t...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arch. Math. Log.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1995